Principal component analysis for fermionic critical points

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal component analysis for fermionic critical points

Natanael C. Costa,1,2,* Wenjian Hu,2,3 Z. J. Bai,3 Richard T. Scalettar,2 and Rajiv R. P. Singh2 1Instituto de Fisica, Universidade Federal do Rio de Janeiro Cx.P. 68.528, 21941-972 Rio de Janeiro RJ, Brazil 2Department of Physics, University of California Davis, California 95616, USA 3Department of Computer Science, University of California Davis, California 95616, USA (Received 22 August 2017...

متن کامل

Emotion Recognition from Facial Action Points by Principal Component Analysis

This paper proposes a novel approach to emotion recognition of a subject employing 36 selected facial action points marked at specific locations on their faces. Facial expressions obtained from the subjects enacting them are recorded, and the corresponding changes in marked action points are evaluated. The measurements reveal that the action points have wider variations in facial expressions co...

متن کامل

Principal Component Projection Without Principal Component Analysis

We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2017

ISSN: 2469-9950,2469-9969

DOI: 10.1103/physrevb.96.195138